Semaine 10 - 2024

Flambage des poutres

CHAPITRE 11 de Gere and Goodno

PARTIE 1: (slide 3 - 20)

Flambage – modèle Euler par equ. différentielle

PARTIE 2: (slide 21 - 33)

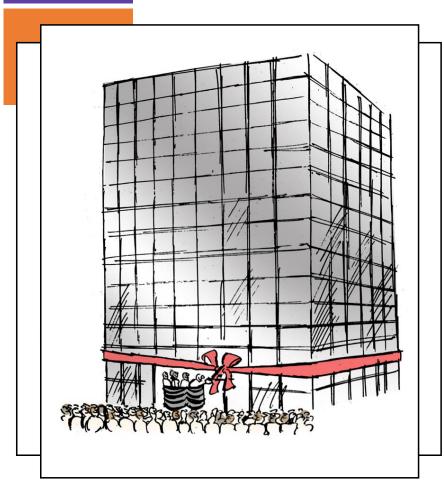
Défaillance (failure)

PARTIE 3: (slide 34 - 47)

Bistabilité

PARTIE 4: (slide 48 - 56)

Charges excentriques



PROGRAMME DU COURS, semaines 7-10

				i
6		Force internes dans les poutres non-déformées.		
O	15.10	Méthode Section et différentielle		
		s(v) at $\pi(v)$ an flavian pure		
6		$\varepsilon(y)$ et $\sigma(y)$ en flexion pure		
	17.10	Moment d'inertie	Série 6	
_				
7	29.10	Charge axiale. Poutre composite	Série 6	
	23.10	Charge axiale. I outre composite	SCITE 0	
7	31.10	Quiz + Session questions & réponses	Série 1-5	
8	05.11	Examen mi-semestre		
	00.111			
8	07.11	Flèche des poutres	Série 7	
9	12.11	Flèche pour guidage flexible	Série 8a	
			00.7000	
9	14.11	Systèmes indéterminés	Série 8b	
10	19.11	Flambage	Séries 9	
	19.11	Fraimage	361163 9	
10	21.11	Q&A	Série 10	

Semaine 10 – partie 1 Objectifs d'apprentissage

- Savoir définir le flambage dans une poutre, et ses conséquences
- Pouvoir Calculer la force F_{cri} critique pour flambage, en fonction des supports

Flambage

σ_{flambage} << σ_{max, matériau}

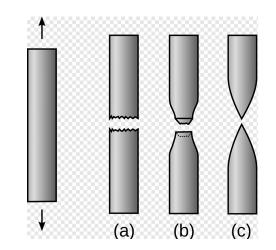
- Le flambage: une <u>instabilité</u> qui se produit lorsqu'une poutre subit une déformation large et soudaine sous une charge compressive beaucoup plus petite que la charge nécessaire pour atteindre la contrainte maximum ($\sigma_{\text{flambage}} << \sigma_{\text{max}}$)
- Cette défaillance est liée à une déflexion dans une direction <u>perpendiculaire</u> à la charge

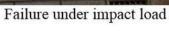
Ici, cylindre creux et non une poutre, mais c'est du flambage quand même!

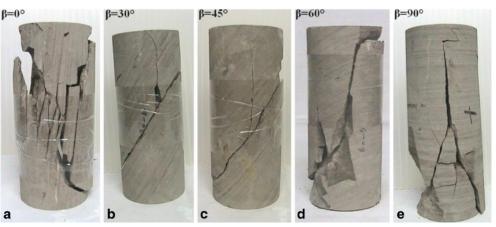
On pense souvent à la contrainte max pour la rupture d'un matériau.

Mais le flambage demande un autre type de réflexion: flambage mène:

- une défaillance de la structure (ne soutient plus les charges)
- à de grandes contraintes,
- et donc à une rupture (ou déformation plastique)







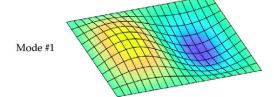
Exemple de flambage catastrophique: suite au flambage, de grandes déformations et des contraintes énormes, et rupture

Buckling of a water-reservoir's columns

Après flambage, le support ne peut plus soutenir la charge du réservoir d'eau

Structure mince et légère, conçue pour charge vertical

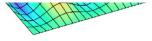
Exemple de flambage sans défaillance structurelle



- Pour l'avion à droite, c'est la structure sous-jacente qui est assez rigide pour résister aux contraintes
- Pour la pièce usinée en verre avec des guidages flexibles ci-dessous, le flambage est bi-stable et « enlève la charge »

Y. Bellouard / S. Henein

https://theaviationist.com/2019/11/20/lets-talk-about-the-b-52-strategic-bombers-characteristic-skin-wrinkles/

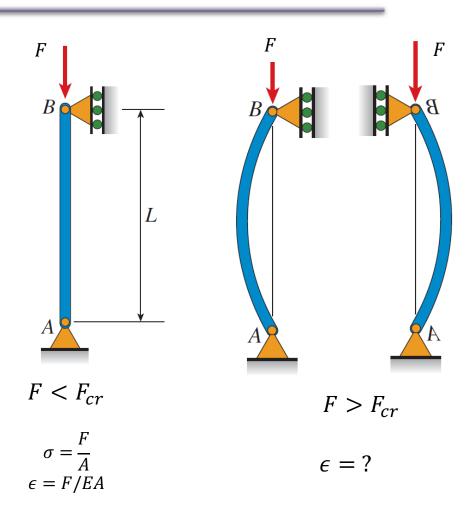


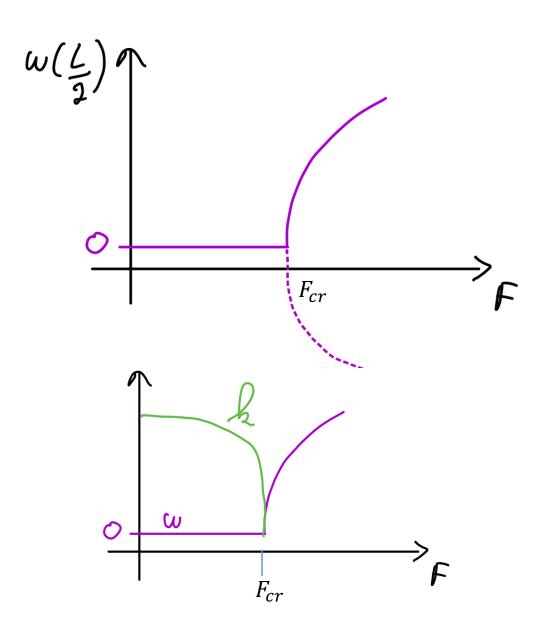
https://www.mdpi.com/1996-1944/12/8/1262

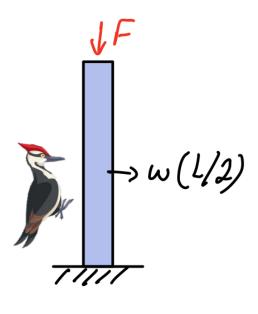
Flambage d'une poutre (charge purement axiale)

Deux régimes de déformation lorsqu'une poutre est chargée en compression:

- $F < F_{cr}$: Quand la charge axiale est petite, le changement de longueur sera simplement dû à la contrainte compressive.
- $F > F_{cr}$ Si la charge axiale dépasse une charge critique F_{cr} , la poutre devient instable et toute perturbation entraînera un flambage (la poutre se plie).
 - Dès qu'elle plie, la poutre risque fort de se casser car les contraintes (σ_x) peuvent dépasser les seuils critiques, avec très grande flèche
 - □ Cas (bi)stable: poutre qui flambe avec une course limitée

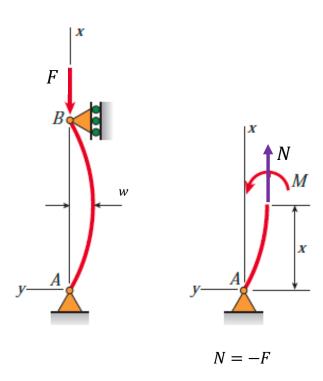






Pour des poutre non-encastrées (pinned-pinned). Force centrées

■ Nous pouvons dériver le modèle Euler pour la force critique de flambage en utilisant la méthode des sections (couper la poutre).



$$M_z(x) = -F w(x)$$
 !! $M(x)$ dépend de $w(x)$!!

$$\frac{d^2w(x)}{dx^2} = \frac{M(x)}{EI} = -\frac{F}{EI}w(x)$$

$$w(x) = C_1 \cdot \sin\left(\sqrt{\frac{F}{EI}}x\right) + C_2 \cdot \cos\left(\sqrt{\frac{F}{EI}}x\right)$$

$$w(x) = C_1 \cdot \sin\left(\sqrt{\frac{F}{EI}}x\right) + C_2 \cdot \cos\left(\sqrt{\frac{F}{EI}}x\right)$$

Conditions aux bord

1-
$$w(0) = 0 \rightarrow C_2 = 0$$
,

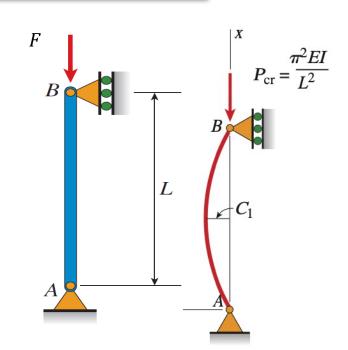
$$w(x) = C_1 \cdot sin\left(\sqrt{\frac{F}{EI}}x\right)$$

$$2-w(L) = 0$$

$$\rightarrow C_1 Sin\left(\sqrt{\frac{F}{EI}}L\right) = 0$$

- Soit $C_1 = 0$, et la poutre reste droite w(x)=0

-Soit
$$\sqrt{\frac{F}{EI}}L = n\pi$$
 et $w(x) = C_1 \cdot \sin\left(\sqrt{\frac{F}{EI}}x\right)$



$$F_{cr} = \left(\frac{n\pi}{L}\right)^2 EI$$

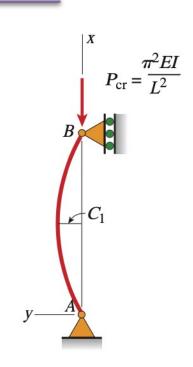
$$F_{cr} = \left(\frac{n\pi}{L}\right)^2 EI$$

$$F_{cr} = \left(\frac{n\pi}{L}\right)^2 EI \qquad w(x) = C_1 \cdot \sin\left(\sqrt{\frac{F}{EI}}x\right)$$

Si $F < F_{crit}$, $C_1 = 0$ et la poutre sera droite

Si $F = \left(\frac{n\pi}{L}\right)^2 EI$ la poutre se déformera

Et si
$$F > \left(\frac{\pi}{L}\right)^2 EI$$
 ????



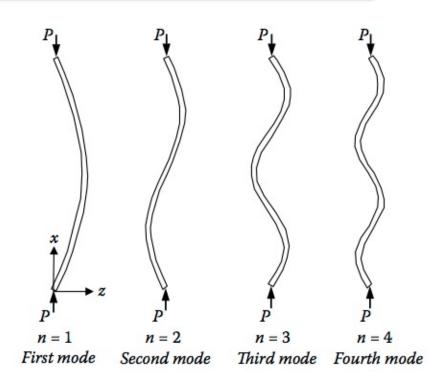
Nous ne connaissons pas C_1 : nous savons que la poutre se déforme, mais pas encore de combien. C1 peut être négatif

(mais voir slide 16 et 356)

- L'équation différentielle comporte une infinité de solutions
- Il en résulte plusieurs modes de flambage
- On ne peut atteindre les modes n>1 que si des supports bloquent certains modes

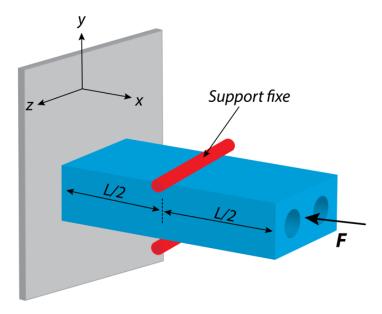
$$F_{cr} = \left(\frac{n\pi}{L}\right)^2 EI$$

$$\sigma_{cr} = \left(\frac{n\pi}{L}\right)^2 \frac{EI}{A}$$



$$F_1 = \left(\frac{\pi}{L}\right)^2 EI < F_2 = \left(\frac{2\pi}{L}\right)^2 EI < F_3 = \left(\frac{3\pi}{L}\right)^2 EI < F_4 = \left(\frac{4\pi}{L}\right)^2 EI$$

Exemple de modes de flambage



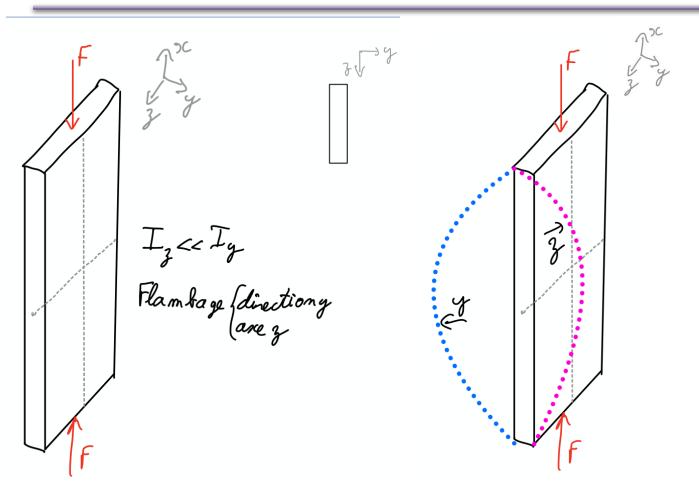
$$F_{cr} = \left(\frac{n\pi}{L}\right)^2 EI$$

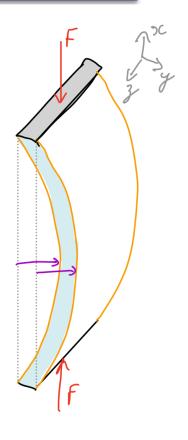
- Le support rouge bloque le mode n=1 selon la direction y, mais permet n=2. (selon y, donc I_z)
- Le support rouge ne bloque pas le mode n=1 selon la direction z, n=1 est permis. (selon z, donc I_V)

Quel Axe de flambage?

$$F_{cr} = \left(\frac{n\pi}{L}\right)^2 E I_{z-ou-y}$$

La poutre pliera selon l'axe avec le plus petit I: il faut comparer I_z et I_y

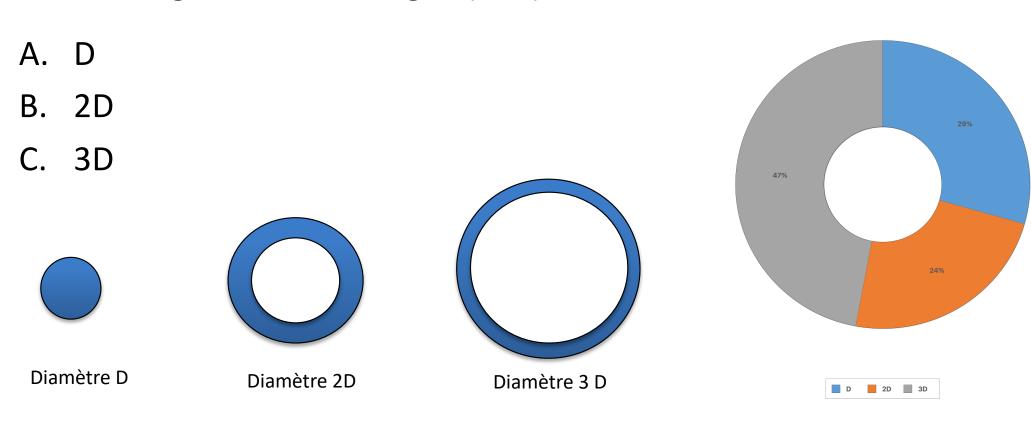




- flèche en y, donc I_z
- flèche en z, donc I_y

Quelle poutre supportera la plus grande charge avant flambage? (n=1)

$$F_{cr} = \left(\frac{n\pi}{L}\right)^2 EI$$

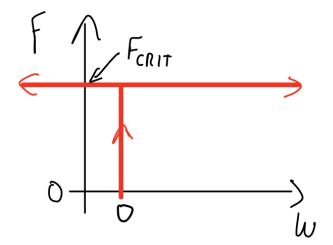


Mêmes section A, mêmes longueur L

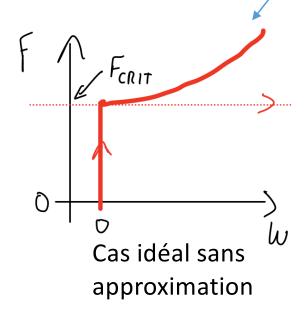
Que vaut C_1 ?

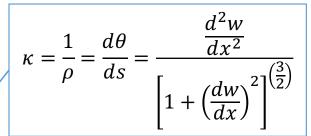
$$w(x) = C_1 \cdot \sin\left(\sqrt{\frac{F}{EI}}x\right)$$

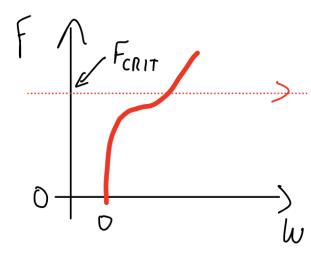
- Notre analyse était limitée aux petits déplacements, car nous avons utilisé l'approximation de $\kappa = w''$ pour la courbure
- Avec cette simplification, C₁ est indéfini



Cas idéal simplifié







Cas poutre non-idéale

Flambage - formule d'Euler

■ Contrainte et charge critiques: Formule d'Euler (1744) pour le flambage:

$$F_{cr} = \left(\frac{n\pi}{L}\right)^2 EI \qquad \rightarrow \qquad \sigma_{crit} = \pi^2 E \left(\frac{nr}{L}\right)^2; \qquad r^2 = \frac{I}{A}$$
 Souvent $n = 1$

- $\Box r = \sqrt{I/A}$: Rayon de Giration (*Radius of gyration*) en [m]. A = section de la poutre
- $\Box \left(\frac{L}{r}\right)$: Coefficient d'élancement (*Slenderness ratio*). Sans unités
- Flèche de la poutre flambée:

$$w(x) = C_1 \cdot \sin\left(\sqrt{\frac{F}{EI}}x\right)$$

- Attention: pour une force selon x, la poutre peut fléchir selon y ou selon z. C'est autour de l'axe avec le plus petit moment d'inertie qu'il y aura flambage.
- Le moment d'inertie (l_y ou l_z) doit donc être choisi pour « plier » autour de l'axe de flambage z ou selon y.

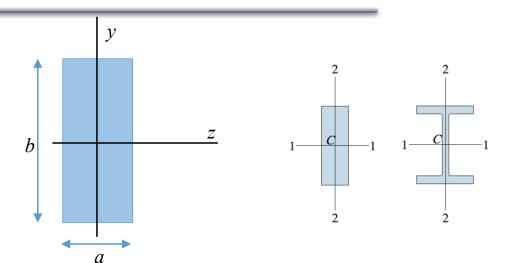
Rayon de giration r

 $r \sim$ épaisseur de la poutre dans le sens du mouvement

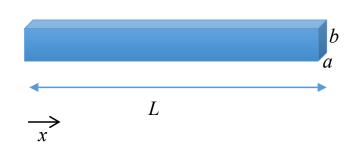
$$r^2 = \frac{I}{A}$$

$$\Box I_Z = \frac{ab^3}{12}$$
 et donc $r_Z = \frac{b}{2\sqrt{3}}$

$$\Box I_y = \frac{ba^3}{12} \text{ et donc } r_y = \frac{a}{2\sqrt{3}}$$



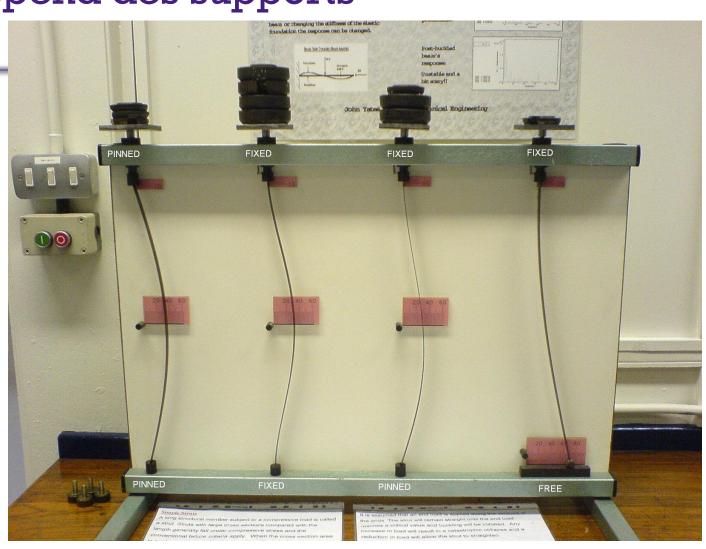
- \blacksquare $\left(\frac{L}{r}\right)$: Coefficient d'élancement
 - $\ \square$ prendre I_x ou I_y qui correspond au bon axe



Flambage: F_{cr} dépend des supports

Pinned = pivot Fixed = encastrée Free = libre

Par Grahams Child —
http://en.wikipedia.org/wiki/Image:Buckledmodel.JPG
CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1368026



Flambage: dépend des supports

Longueur effective

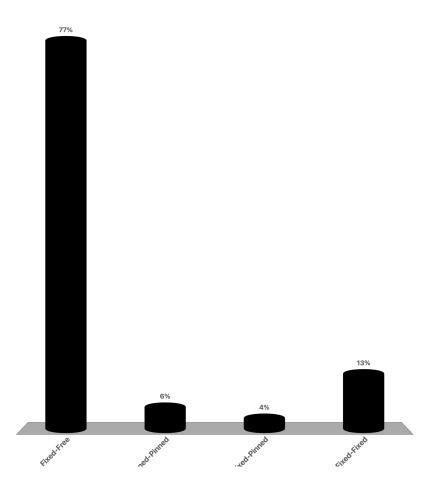
 \blacksquare La formule d'Euler peut être généralisée vers d'autres types de supports en utilisant le concept de la longueur effective $L_{\it eff}$

$$F_{cr} = \left(\frac{\pi}{L_{eff}}\right)^2 EI \quad \rightarrow \quad \sigma_{crit} = \pi^2 E \left(\frac{r}{L_{eff}}\right)^2$$

(a) Pinned-pinned column	(b) Fixed-free column	(c) Fixed-fixed column	(d) Fixed-pinned column
$P_{\rm cr} = \frac{\pi^2 EI}{L^2}$	$P_{\rm er} = \frac{\pi^2 EI}{4L^2}$	$P_{\rm cr} = \frac{4\pi^2 EI}{L^2}$	$P_{\rm cr} = \frac{2.046 \ \pi^2 EI}{L^2}$
		L_e	
$L_e = L$	$L_e = 2L$	$L_e = 0.5L$	$L_e = 0.699L$

Pinned = pivot Fixed = encastrée Free = libre 4 poutres, mêmes dimensions, différents supports. On augment doucement la charge. Laquelle flambera en premier?

- A. Fixed-Free
- B. Pinned-Pinned
- c. Fixed-Pinned
- D. Fixed-Fixed



Semaine 10 – partie 2 Objectifs d'apprentissage

- Prédire si une poutre va se casser par:
 - i) rupture de matériau

ou

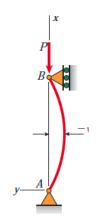
- ii) par flambage (=structurelle)
- Choisir les dimensions d'une poutre pour avoir un facteur de sécurité donné par rapport aux deux modes de défaillance

Défaillance

Matériau ou Flambage?

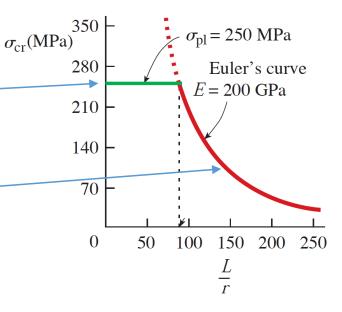
- Sous une charge, un poutre ne tient plus la charge car soit:
 - $\ \square$ on dépasse la contrainte max pour rupture du matériau $\sigma_{rupture}$ (ne dépend pas de $\it L$, mais dépend de $\it A$)
 - $\ \square$ On dépasse la contrainte max pour flambage $\sigma_{flambage}$ (dépend de L et de I). La poutre se plie (puis peut-être se casse)

Graph of Euler's curve [from Eq. (11-19)] for structural steel with E=200 GPa and $\sigma_{\rm pl}=250$ MPa

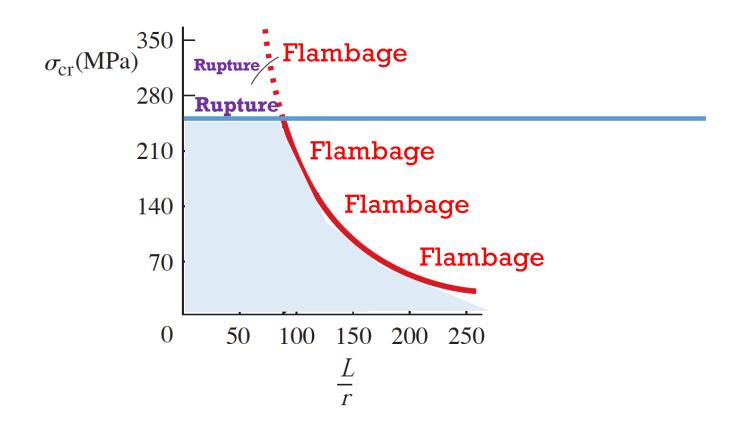


 $\sigma_{rupture}$ est une propriété du matériau

$$\sigma_{flambage} = \frac{\left(\frac{n\pi}{L}\right)^2 EI}{A} \sim \pi^2 E \left(\frac{r}{L}\right)^2$$

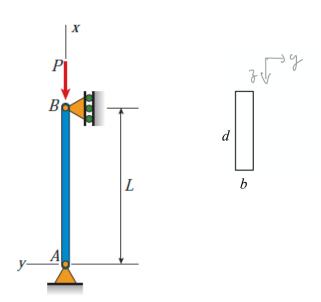


(Gere and Goodno chapitre 11)



Flambage et facteur de sécurité.

- Poutre de section rectangulaire, support "Pinned-Pinned" (pivot-pivot)
- b = 12 cm, d = 50 cm, E = 200 GPa, $\sigma_{Yield} = 250$ MPa.
 - a) Pour une longueur L = 5 m, quelle est la charge max axiale pour un facteur de sécurité SF=2?
 - b) Si la colonne est soumise à une charge axiale F=79 kN, quelle est la longueur maximale, pour SF=2?
 - c) Pour les deux cas, quelle sera la direction de la flexion (direction axe y ou z)?



Flambage et facteur de sécurité.

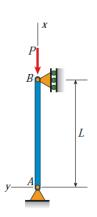
a) L=5 m. Trouver Charge F_{max} : Défaillance du matériau ou défaillance structurelle?

Critère Défaillance du matériau:

$$SF = 2 = \frac{\sigma_{défaill}}{\sigma_{x,max}}$$
 c'est à dire $\sigma_{x,max} = \frac{\sigma_{défaill}}{2}$

$$F_{max, Materiau} = \sigma_{x, max} A = \frac{\sigma_{défaill}}{2} A = 7.5 \text{ MN}$$

 $F_{max,\,Materiau}$ ne dépend pas de L



Critère Défaillance structurelle (flambage):

$$SF = 2 = \frac{F_{Crit,flamb}}{F_{max,flamb}}$$

$$F_{max, Flamb} = \frac{F_{crit, Flamb}}{2}$$

Flambage et facteur de sécurité.

$$F_{max,Flamb} = \frac{1}{2} \frac{\pi^2}{L^2} EI$$
 (premier mode) $I_Z = \frac{b^3 d}{12}$ $I_Z = \frac{b^3 d}{12}$ $I_Y = \frac{d^3 b}{12}$ $I_Y = \frac{d^3 b}{12}$

plus facile de plier selon axe z que selon axe y (car $I_z < I_y$ vu que b < d) donc on utilise $I_z = \frac{b^3 d}{12}$ car flexion de flambage selon y

On trouve $F_{max, Buckling} < F_{max, Matériau}$ 2.84 MN < 7.5 MN

donc défaillance par flambage et non par rupture pour L=5 m, et charge axiale max de 2.84 MN

Flambage et facteur de sécurité.

b) longueur max de la poutre pour F=79 kN?

79 kN << 7.5 MN, donc ce sera une défaillance par flambage et non par rupture du matériau

Défaillance structurelle (flambage):
$$SF = 2 = \frac{F_{cr,flambage}}{F_{ext}} \rightarrow F_{ext} = \frac{\pi^2}{2L_{crit}^2}EI$$

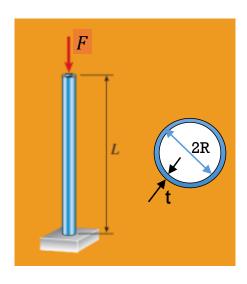
$$L_{crit} = \sqrt{\pi^2 \frac{EI}{2F}} = \sqrt{\pi^2 \frac{2 \cdot 12^3 \cdot 50 \cdot 10^3}{2 \cdot 12 \cdot 79 \cdot 10^3}} \approx 15 \text{ m}$$

7.7 MN pour rupture 2.84 MN flambage à 5 m 0.079 MN flambage à 15 m

- Dans les deux cas (a et b), la structure se casse par flambage (et non par rupture)
- défaillance en flambage pour une force qui est 100x plus petite que force pour rupture!
- La flexion sera perpendiculaire à la dimension la plus mince de la poutre, ici b et non d.

Flambage et facteur de sécurité

- Cylindre creux, conditions "encastré libre" (= "fixed-free"). Donc $L_{eff} = 2L$
- R = 7.07 cm, L = 3.1416 m, E = 200 GPa, $\sigma_{v,max} = 250$ MPa
- Trouver l'épaisseur minimum t_{min} de la paroi pour supporter une charge de F=250 kN avec un facteur de sécurité SF=2



on considère les 2 modes de défaillance:

$$SF = \frac{\sigma_{y,max}}{\sigma_{charge}} \ge 2$$
 rupture matériau

$$SF = \frac{\sigma_{cr,flambage}}{\sigma_{charge}} = \frac{F_{crit,flambage}}{F_{charge}} \ge 2$$
 flambage

Flambage et facteur de sécurité

critère 1:

pas de rupture du matériau sous la charge de 250 kN

$$\sigma_{charge} = \frac{F}{A} = \frac{F}{\pi (R^2 - (R - t)^2)} \approx \frac{F}{2\pi Rt}$$

Pour simplifer les maths, j'ai pris que $\frac{t}{R} << 1$ Vous pouvez résoudre plus correctement sans cette approximation.

$$SF = \frac{\sigma_{y,max}}{\sigma_{load}} = 2$$

$$\frac{F}{2\pi Rt_{min}} = \frac{\sigma_{y,max}}{2}$$

$$t_{min} = F / \pi R \sigma_{y,max}$$

$$t_{min,rupture} = 4 mm$$

load for fixed F

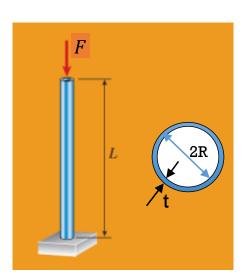
Vyield

Vy/2

think R t

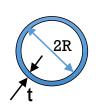
Et en effet $t \ll R$ avec R = 7.07 cm

Rupture si $t < t_{\rm min}$



Example F2

Flambage et facteur de sécurité



critère 2: pas de flambage

$$F_{cr,flambage} = \left(\frac{\pi}{L_{eff}}\right)^2 EI = \frac{\pi^2}{4L^2} E^{\frac{\pi}{4}} (R^4 - (R - t)^4)$$

$$\frac{F_{crit,flambage}}{F_{charge}} \ge 2$$

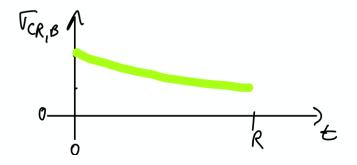
$$\pi^2 \frac{E}{4L^2} \frac{\pi}{4} (R^4 - (R - t)^4) = 2F$$

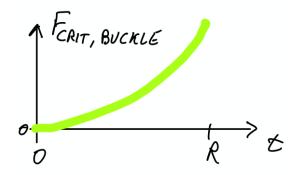
$$t = R - \sqrt[4]{R^4 - \frac{32FL^2}{\pi^3 E}}$$

$$t_{min,flambage} = 11.5 \ mm$$

$$t_{min,rupture} = 4 mm$$

 $t_{min,flambage} > t_{min,rupture}$ il faut donc une paroi plus épaisse que $11.5~\mathrm{mm}$ pour résister au flambage





on veut que la contrainte critique pour le flambage soit max $\frac{1}{2}$ de la contrainte due au 250 kN pour assurer de ne pas avoir de flambage.

on s'intéresse donc au ratio $\frac{\sigma_{charge}}{\sigma_{cr,Flamb}}$ et non $\frac{\sigma_{y,max}}{\sigma_{cr,Flamb}}$

- \blacksquare Une paroi mince peut donner un grand $I_{\rm z}$ pour une faible section, et donc une grande
- (mais en réalité flambage localisé)

$$r=\sqrt{rac{I}{A}}$$
 Rayon de giration

résistance au flambage

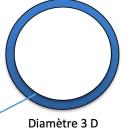
• Pour section circulaire pleine

$$r = \frac{R}{2}$$

• Pour section circulaire d'épaisseur t<<R $r=rac{R}{\sqrt{2}}$

Quelle poutre supportera la plus grande charge avant flambage?

- A. D
- B. 2D
- C. 3D



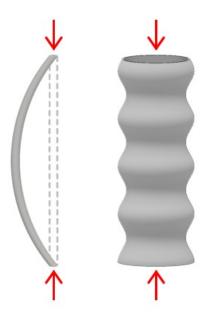
Diamètre D

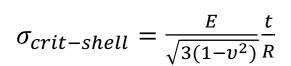
Diamètre 2D

$$\sigma_{flambage} = \frac{\left(\frac{\pi}{L}\right)^2 EI}{A} = \pi^2 E \left(\frac{r}{L}\right)^2$$

Shell buckling

■ Le flambage est aussi un mode de défaillance pour des structures à paroi mince (« shell »)

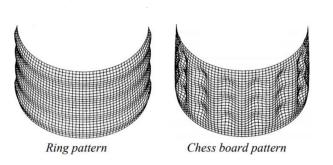




t: épaisseur paroi. R: E: module de Young. v:

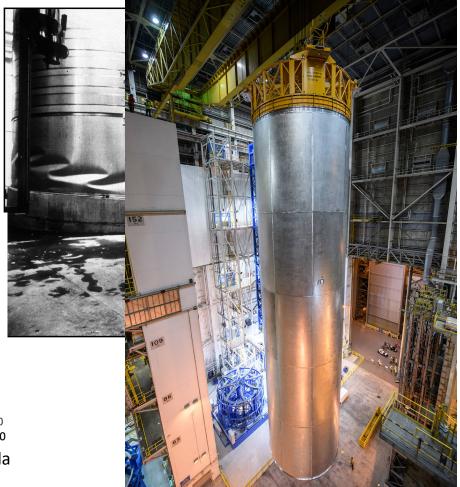
R: rayon du cylindre. v: ratio de Poisson

https://shellbuckling.com/index.php





Petit défauts réduisent beaucoup la contrainte critique pour flambage



Semaine 10b –partie 3 Objectifs d'apprentissage de cette partie

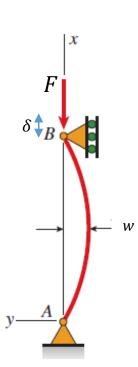
- Flambage- calcul par l'énergie
- Bistabilité de poutres
- Flambage par expansion thermique
- Flambage pour poutre à faible élancement

Flambage – calcul par l'énergie

L'énergie stockée dans une poutre qui a flambée suite à une charge axiale :

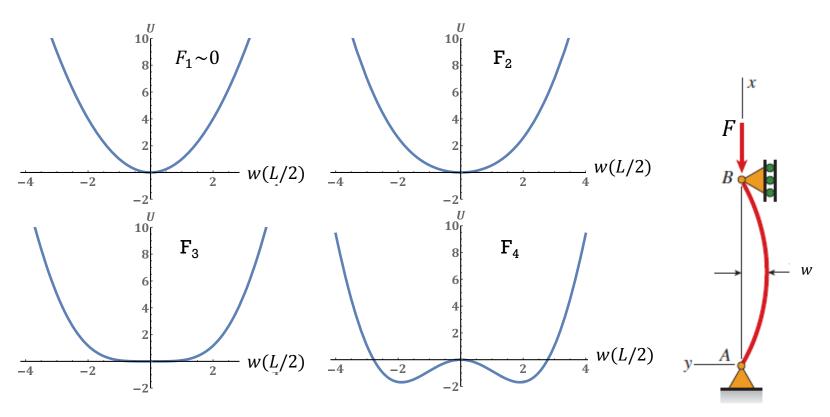
$$U_{tot} = U_{m\acute{e}canique} + U_{charge}$$
$$= \frac{1}{2} \int_{0}^{L} EIw''(x)^{2} dx + F\delta$$

- δ : déplacement selon x du Point B
- Pour une petite charge F, la situation stable est w=0 et donc $\delta=0$ (sauf petite déformation due à compression du matériau)
- Lorsque F augmente, w=0 devient un maximum local d'énergie, et des solutions stables apparaissent avec $\delta>0$ (modes en flambage)
- lacksquare On calcule U_{tot} et cherche les minima et maxima
- Ça donne les flèches après flambage



Flambage – calcul par l'énergie

$$U_{tot} = U_{m\acute{e}canique} + U_{charge}$$
$$= \frac{1}{2} \int_{0}^{L} EIw''(x)^{2} dx + F\delta$$

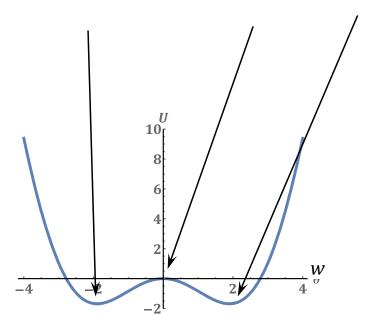


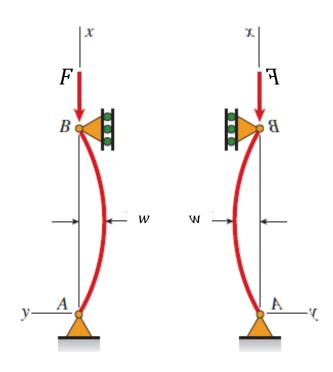
$$F_{sys} = \frac{dE}{dw} \qquad k_{sys} = \frac{dF}{dw}$$

$$F_1 < F_2 < F_3 < F_4$$

Bistables

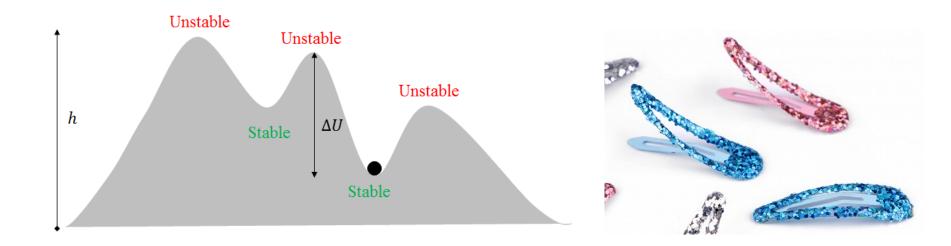
position stable position instable position stable





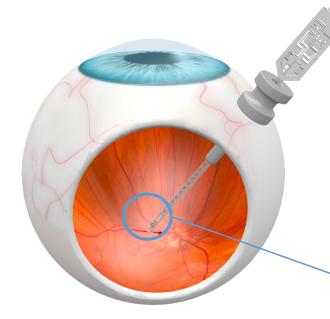
$$F_{sys} = \frac{dE}{dw} \quad k_{sys} = \frac{dF}{dw}$$

Bistables



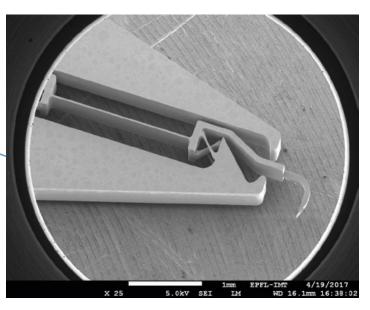
Systèmes Bistables

Applications médicales:



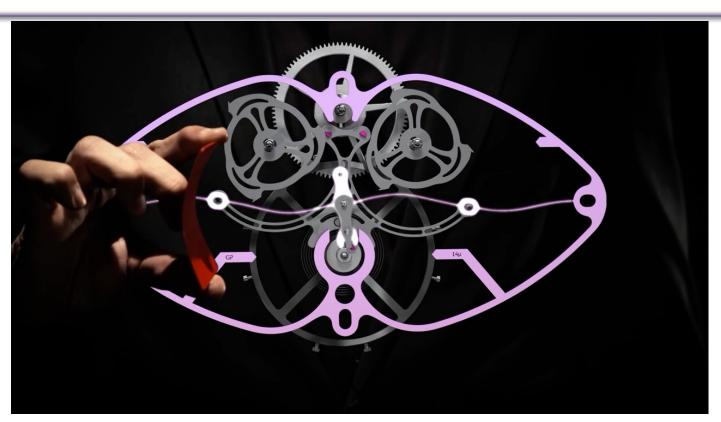
Un outil qui perce une veine rétinienne pour injecter des produits pour éliminer une occlusion (labos S. Henein et Y. Bellouard)

Usiné en verre!!!



https://www.youtube.com/watch?v=MQJFRt-2hDk

Bistables en horlogerie (GP constant escapement)



«whatever the energy of the barrel, the escapement will transmit a constant energy to the regulator (or balance). In order to do so, the idea was to integrate a silicon intermediary device into the escapement which contained an extremely thin blade, accumulating energy up to a threshold close to instability; always the same. It then transmits this energy completely ...»

https://www.girard-perregaux.com/en/bridges/constant-escapement-lm-93505-21-631-ba6e

Effet de la Température

Flambage

Effet de la Température

- Si $\alpha \Delta T > 0$, cette "expansion" provoque une contrainte compressive dans la poutre
- Si cette contrainte est trop élevée, il y aura flambage.

$$\sigma_{crit,Thermal} = \alpha \cdot \Delta T \cdot E = \pi^2 E \left(\frac{r}{L_{eff}}\right)^2$$

$$\Delta T_{\text{flamb}} = \frac{\pi^2}{\alpha} \left(\frac{r}{L_{eff}} \right)^2$$

 ΔT pour flambage ne depend pas de E!



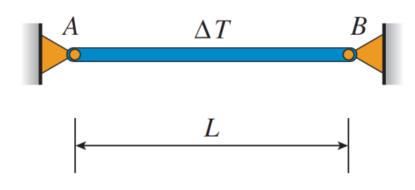
L/r = 100; $\alpha = 10^{-6} \text{ K}^{-1}$; E = 200 GPa Quel ΔT pour flambage?

A.
$$\Delta T = 100 \text{ K}$$

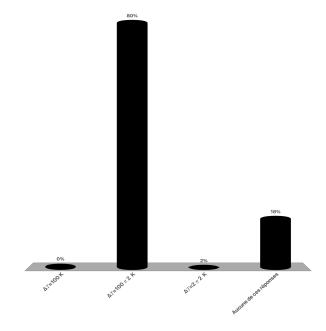
B.
$$\Delta T = 100\pi^2 \text{ K}$$

c.
$$\Delta T = 2\pi^2 \text{ K}$$

D. Aucune de ces réponses



$$\Delta T_{\text{flamb}} = \frac{\pi^2}{\alpha} \left(\frac{r}{L_{eff}} \right)^2$$



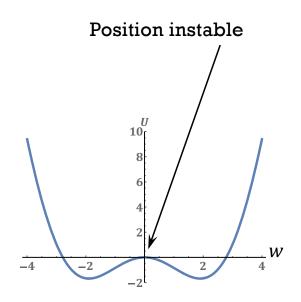
A.
$$\Delta T = 100 \text{ K}$$

B.
$$\Delta T = 100\pi^2 \text{ K}$$

c.
$$\Delta T = 2\pi^2 \text{ K}$$

D. Aucune de ces réponses

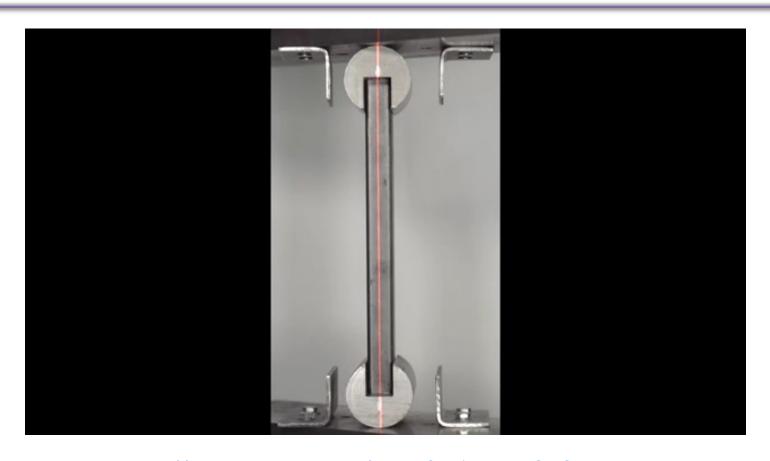
flambage – déformation plastique



Canette: déformation plastique suite au flambage

Flambage de poutres "pas minces"

(faible coefficient d'élancement, L/r pas >>1)

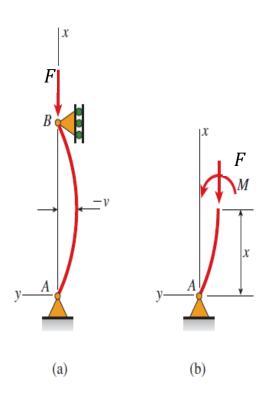


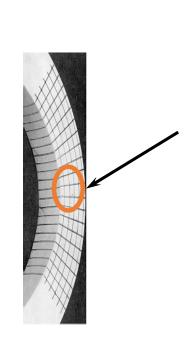
https://www.youtube.com/watch?v=jNwvub87l8o

Flambage

Faible coefficient d'élancement

■ Contrainte $\sigma(x, y)$ = dans une poutre qui se plie soumise à une force axiale F





$$M(x) = -Fw(x)$$

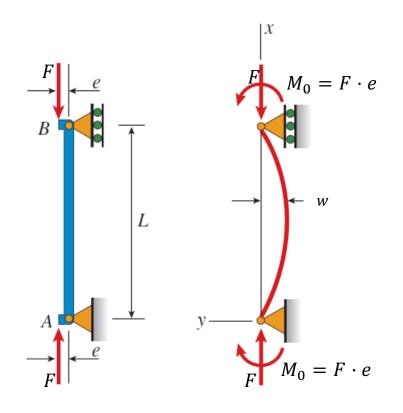
$$\sigma_{courbure}(x, y) = \frac{Fw(x)}{I}(y - y_0)$$

$$\sigma_{comp,Max,courbure} = \frac{F}{2} \frac{t}{I} w(x)$$

Si t/I est grand, défaillance par déformation plastique car forte contrainte due à la courbure.

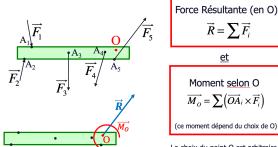
Semaine 10b – partie 4 Objectifs d'apprentissage de cette partie

• Calculer la contrainte max dans une poutre avec <u>charges excentriques</u>



- Jusqu'à présent, la force/charge passait par le centroïde de la poutre
- Mais en pratique, la charge est souvent décalée de cet axe : chargement excentrique. Décalage *e*
- Nous pouvons modéliser l'excentricité avec une charge axiale F et un moment M₀ au support au point B
 - \square Force externe en B: F = F
 - \square Moment externe en B: $M_0 = F \cdot e$

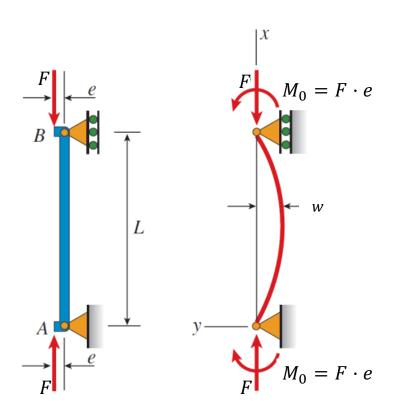
Tout ensemble de forces peut être réduit à 2 éléments



Le choix du point O est arbitraire Mais attention: $\overrightarrow{M_0}$ dépend de O

Flambage

Charges excentriques



Avec une charge excentrique, la poutre se déforme même sous de petites charges (car moments aux extrémités)

Moment de flexion $M_z(x)$ dans la poutre

$$M_Z(x) = F.e - Fw(x)$$

Equation différentielle inhomogène:

$$EI\frac{\partial^2 w(x)}{\partial x^2} = M_Z(x)$$

$$\frac{\partial^2 w(x)}{\partial x^2} + \frac{F}{FI}w(x) = \frac{F}{FI}e$$

Flambage

Charges excentriques

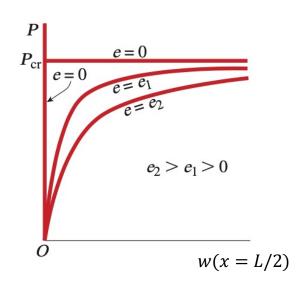
■ Flèche, une fois l'équation résolue:

$$w(x) = C_1 \sin\left(\sqrt{\frac{F}{EI}}x\right) + C_2 \cos\left(\sqrt{\frac{F}{EI}}x\right) + e$$

■ Conditions aux bords pour trouver C_1 et C_2 :

$$w(x = 0) = 0$$
$$w(x = L) = 0$$

$$w(x) = -e\left(\tan\left(\sqrt{\frac{F}{EI}}\frac{L}{2}\right)\sin\left(\sqrt{\frac{F}{EI}}x\right) + \cos\left(\sqrt{\frac{F}{EI}}x\right) - 1\right)$$



Si
$$e = 0$$
 on a
$$w(x) = C_1 \sin\left(\sqrt{\frac{F}{EI}}x\right)$$
ou $w(x) = 0$

formule secant (1/cos)

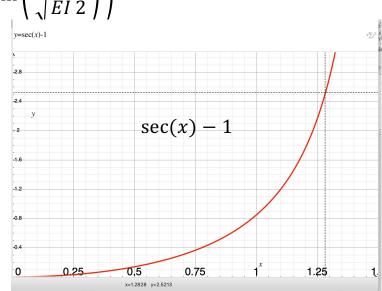
- La flèche maximale de cette poutre est au milieu (à x = L/2).
- C'est à ce point, avant le flambage, que le moment interne et la flèche sont maximaux, pour un F donné:

$$|w|_{max} = \left| w\left(\frac{L}{2}\right) \right| = e\left(-1 + \cos\left(\sqrt{\frac{F}{EI}}\frac{L}{2}\right) + \tan\left(\sqrt{\frac{F}{EI}}\frac{L}{2}\right)\sin\left(\sqrt{\frac{F}{EI}}\frac{L}{2}\right)\right) =$$

$$= e\left(\frac{1}{\cos\left(\sqrt{\frac{F}{EI}}\frac{L}{2}\right)} - 1\right)$$

$$|w|_{max} = e \left(\sec \left(\sqrt{\frac{F}{EI}} \frac{L}{2} \right) - 1 \right)$$

(Si
$$e = 0$$
, on retombe sur $w = 0$) $\sec(x) = 1/\cos(x)$



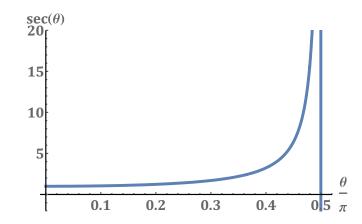
$$|w|_{max} = e \left(\sec \left(\sqrt{\frac{F}{EI}} \frac{L}{2} \right) - 1 \right)$$

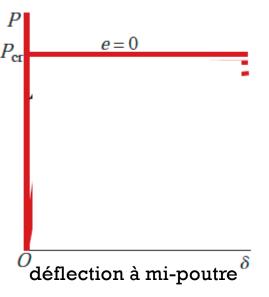
- la fonction $sec(\theta)$ tend vers l'infini pour $\theta = \frac{\pi}{2}$
- Cela détermine une valeur critique de la charge où w(x) serait « infini »:

$$\alpha = \sqrt{\frac{F_{crit}}{EI}} \frac{L}{2} = \frac{\pi}{2}$$

$$F_{crit} = \pi^2 \frac{EI}{L^2}$$

c'est le même F_{crit} que charge non-excentrique! mais la déflection commence pour tout F > 0





Quelle est la Contrainte maximale?

■ Moment de flexion : $M_z(x) = F \cdot e - Fw(x)$

$$|w|_{max} = e \left(\sec \left(\sqrt{\frac{F}{EI}} \frac{L}{2} \right) - 1 \right)$$

$$M_{max} = F \cdot e \sec \left(\sqrt{\frac{F}{EI}} \frac{L}{2} \right) = F \cdot e \sec \left(\sqrt{\frac{F}{F_{crit}}} \frac{\pi}{2} \right)$$

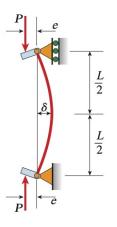
■ Contrainte maximum est compressive:

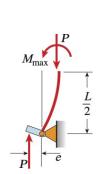
$$\sigma_{max} = -\frac{F}{A} - \frac{M_{max} \cdot c}{I}$$

rappel: c est la distance maximale à l'axe neutre (en y).

$$\sigma_{max} = -\frac{F}{A} \left(1 + \frac{A}{I} e. c. \sec \left(\sqrt{\frac{F}{F_{crit}}} \frac{\pi}{2} \right) \right)$$

 $|\sigma_{max,compression}| > |\sigma_{max,traction}|$ car force axiale compressive





(comparer à slide 25)

 Contrainte compressive maximum (côté concave) exprimée en fonction du rayon de giration r en fonction de charge F

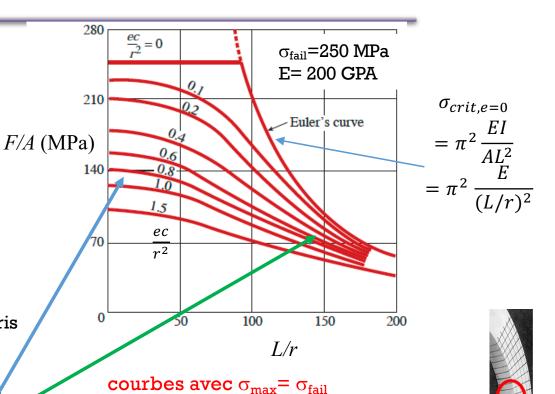
$$r^2 = \frac{I}{A}$$

$$\sigma_{max} = -\frac{F}{A} \left(1 + \frac{ec}{r^2} \sec\left(\sqrt{\frac{F}{EA}} \frac{L}{2r}\right) \right)$$

où $\frac{ec}{r^2}$ est le rapport d'excentricité, typiquement compris entre 0 et 3, mais souvent <1.

La charge excentrique a un effet relatif plus prononcé sur les poutres peu élancées.

La contrainte maximum (la charge externe max avant défaillance) décroit quand L/r augmente

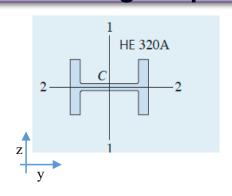


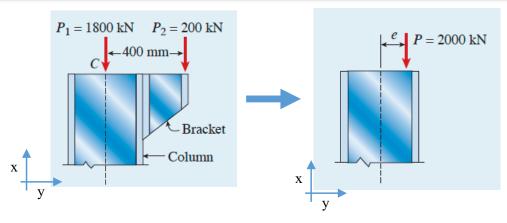
La charge F doit être choisie pour être

en-dessous de la ligne rouge

Exemple charge excentrique

Trouver la contrainte compressive maximum dans cette poutre pour la charge imposée





On trouve *e* qui qui donne le même moment des forces en C que les 2 forces

Une poutre en acier de longueur 7,5 m.

On trouve les valeurs de géométrie dans des tableaux pour une poutre H 320A

$$A = 124.4 \,\mathrm{cm^2}$$
 $r = 13.58 \,\mathrm{cm}$ $c = \frac{310 \,\mathrm{mm}}{2} = 155 \,\mathrm{mm}$

$$\sigma_{max} = -\frac{F}{A} \left(1 + \frac{ec}{r^2} \sec\left(\sqrt{\frac{F}{EA}} \frac{L}{2r}\right) \right) = 236 \text{ MPa}$$

Et on compare au limite pour le matériau (mais c'est une grande contrainte)

- Les longues poutres avec un grands L/r : flambage à faible contrainte
- Les courtes poutres avec un faible L/r : défaillance par rupture du matériau
- Les poutres intermédiaires: défaillance par flambage plastique

■ Fin de la matière avec Herbert Shea

■ Vous pouvez me poser des questions par mail, ou prendre rdv pour parler sur zoom (avec moi ou un assistant). Svp n'hésitez pas!

■ Bon courage!